Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
arxiv; 2024.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2404.01467v1

ABSTRACT

This study maps the spread of two cases of COVID-19 conspiracy theories and misinformation in Spanish and French in Latin American and French-speaking communities on Facebook, and thus contributes to understanding the dynamics, reach and consequences of emerging transnational misinformation networks. The findings show that co-sharing behavior of public Facebook groups created transnational networks by sharing videos of Medicos por la Verdad (MPV) conspiracy theories in Spanish and hydroxychloroquine-related misinformation sparked by microbiologist Didier Raoult (DR) in French, usually igniting the surge of locally led interest groups across the Global South. Using inferential methods, the study shows how these networks are enabled primarily by shared cultural and thematic attributes among Facebook groups, effectively creating very large, networked audiences. The study contributes to the understanding of how potentially harmful conspiracy theories and misinformation transcend national borders through non-English speaking online communities, further highlighting the overlooked role of transnationalism in global misinformation diffusion and the potentially disproportionate harm that it causes in vulnerable communities across the globe.


Subject(s)
COVID-19
2.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-4105186.v1

ABSTRACT

Introduction Vaccination is an essential strategy against COVID-19 in the current era of emerging variants. This study evaluates the real-world immunogenicity and effectiveness of the recombinant subunit COVID-19 vaccine (Zifivax) in Alzheimer's disease (AD) patients.Methods 249 AD patients were enrolled in a multicentre, longitudinal cohort study. Levels of RBD-IgG, neutralization antibody activity, and cytokines were identified to evaluate the immune responses. Clinical outcomes were assessed within one month following Omicron infection..Results Following three doses, the vaccine induced a robust immune response, elevating neutralizing antibodies and activating T-cells. AD patients exhibited significantly higher humoral immune responses compared to unvaccinated counterparts. Following Omicron infection, unvaccinated patients experienced higher levels of Th1/Th2-type cytokines than vaccinated individuals. Vaccination correlated with increased survival rates and extended survival times after infection..Discussion The findings highlight the vaccine's efficacy in reducing severe illness, and preventing death in AD patients facing Omicron infection.


Subject(s)
COVID-19 , Death , Alzheimer Disease
3.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3178189.v1

ABSTRACT

The rapid development, approval, and global distribution of COVID-19 vaccines represent an unprecedented intervention in public health history, with over 13 billion doses administered worldwide in two years. However, our understanding of the HLA genetic underpinnings of COVID-19 vaccine-induced antibody responses and their clinical implications for breakthrough outcomes remain limited. To bridge this knowledge gap, we designed and performed a series of genetic and epidemiological analyses among 368,098 vaccinated individuals, and a subset of 194,371 participants who had antibody serology tests. Firstly, we corroborated earlier findings that SNPs associated with antibody response were predominantly located in Major Histocompatibility Complex region, and that the expansive HLA-DQB1*06 allele family was linked to better antibody responses. However, our findings contest the claim that DQB1*06 alleles alone significantly impact breakthrough risks. Additionally, our results suggest that the specific DQB1*06:04 subtype could be the true causal allele, as opposed to the previously reported DQB1*06:02. Secondly, we identified and validated six new functional HLA alleles that independently contribute to vaccine-induced antibody responses. Moreover, we unravelled additive effects of variations across multiple HLA genes that, concurrently, change the risk of clinically relevant breakthrough COVID-19 outcomes. Finally, we detangled the overall vaccine effectiveness and showed that antibody positivity accounts for approximately 20% protection against breakthrough infection and 50% against severe outcomes. These novel findings provide robust population evidence demonstrating how variations within HLA genes strongly, collectively, and causally influence vaccine-induced antibody responses, and the risk of COVID-19 breakthrough infection and related outcomes, with implications for subsequent functional research and personalised vaccination.


Subject(s)
COVID-19 , Breakthrough Pain
4.
Cell Rep ; 42(6): 112630, 2023 May 30.
Article in English | MEDLINE | ID: covidwho-2327628

ABSTRACT

Although therapeutic B cell depletion dramatically resolves inflammation in many diseases in which antibodies appear not to play a central role, distinct extrafollicular pathogenic B cell subsets that accumulate in disease lesions have hitherto not been identified. The circulating immunoglobulin D (IgD)-CD27-CXCR5-CD11c+ DN2 B cell subset has been previously studied in some autoimmune diseases. A distinct IgD-CD27-CXCR5-CD11c- DN3 B cell subset accumulates in the blood both in IgG4-related disease, an autoimmune disease in which inflammation and fibrosis can be reversed by B cell depletion, and in severe COVID-19. These DN3 B cells prominently accumulate in the end organs of IgG4-related disease and in lung lesions in COVID-19, and double-negative B cells prominently cluster with CD4+ T cells in these lesions. Extrafollicular DN3 B cells may participate in tissue inflammation and fibrosis in autoimmune fibrotic diseases, as well as in COVID-19.

5.
Clin Infect Dis ; 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2326542
6.
Cell Rep Methods ; 3(3): 100421, 2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2246639

ABSTRACT

Serological assays are important diagnostic tools for surveying exposure to the pathogen, monitoring immune response post vaccination, and managing spread of the infectious agent among the population. Current serological laboratory assays are often limited because they require the use of specialized laboratory technology and/or work with a limited number of sample types. Here, we evaluate an alternative by developing time-resolved Förster resonance energy transfer (TR-FRET) homogeneous assays that exhibited exceptional versatility, scalability, and sensitivity and outperformed or matched currently used strategies in terms of sensitivity, specificity, and precision. We validated the performance of the assays measuring total immunoglobulin G (IgG) levels; antibodies against severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle Eastern respiratory syndrome (MERS)-CoV spike (S) protein; and SARS-CoV-2 S and nucleocapsid (N) proteins and applied it to several large sample sets and real-world applications. We further established a TR-FRET-based ACE2-S competition assay to assess the neutralization propensity of the antibodies. Overall, these TR-FRET-based serological assays can be rapidly extended to other antigens and are compatible with commonly used plate readers.

7.
Clin Infect Dis ; 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2236036

ABSTRACT

The diagnosis of post-acute sequelae of COVID-19 (PASC) poses an ongoing medical challenge. To identify biomarkers associated with PASC we analyzed plasma samples collected from PASC and COVID-19 patients to quantify viral antigens and inflammatory markers. We detect SARS-CoV-2 spike predominantly in PASC patients up to 12 months post-diagnosis.

9.
Front Immunol ; 13: 984553, 2022.
Article in English | MEDLINE | ID: covidwho-2142012

ABSTRACT

SARS-CoV-2 plasma viremia has been associated with severe disease and death in COVID-19. However, the effects of viremia on immune responses in blood cells remain unclear. The current study comprehensively examined transcriptional signatures of PBMCs involving T cells, B cells, NK cells, monocytes, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) respectively, from three different groups including individuals with moderate (nM), or severe disease with (vS) or without (nS) detectable plasma viral load. Whole transcriptome analysis demonstrated that all seven immune cell subsets were associated with disease severity regardless of cell type. Supervised clustering analysis demonstrated that mDCs and pDCs gene signatures could distinguish disease severity. Notably, transcriptional signatures of the vS group were enriched in pathways related to DNA repair, E2F targets, and G2M checkpoints; in contrast, transcriptional signatures of the nM group were enriched in interferon responses. Moreover, we observed an impaired induction of interferon responses accompanied by imbalanced cell-intrinsic immune sensing and an excessive inflammatory response in patients with severe disease (nS and vS). In sum, our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in seven major immune cells in COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Viremia , Immunity, Innate , Interferons/metabolism
10.
Nat Biomed Eng ; 6(8): 968-978, 2022 08.
Article in English | MEDLINE | ID: covidwho-1984391

ABSTRACT

Rapid, accurate and frequent detection of the RNA of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and of serological host antibodies to the virus would facilitate the determination of the immune status of individuals who have Coronavirus disease 2019 (COVID-19), were previously infected by the virus, or were vaccinated against the disease. Here we describe the development and application of a 3D-printed lab-on-a-chip that concurrently detects, via multiplexed electrochemical outputs and within 2 h, SARS-CoV-2 RNA in saliva as well as anti-SARS-CoV-2 immunoglobulins in saliva spiked with blood plasma. The device automatedly extracts, concentrates and amplifies SARS-CoV-2 RNA from unprocessed saliva, and integrates the Cas12a-based enzymatic detection of SARS-CoV-2 RNA via isothermal nucleic acid amplification with a sandwich-based enzyme-linked immunosorbent assay on electrodes functionalized with the Spike S1, nucleocapsid and receptor-binding-domain antigens of SARS-CoV-2. Inexpensive microfluidic electrochemical sensors for performing multiplexed diagnostics at the point of care may facilitate the widespread monitoring of COVID-19 infection and immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Humans , Lab-On-A-Chip Devices , Plasma , RNA, Viral , Saliva , Spike Glycoprotein, Coronavirus
11.
Sci Immunol ; 7(73): eabl9464, 2022 07 22.
Article in English | MEDLINE | ID: covidwho-1949935

ABSTRACT

CD4+ T cells are central to long-term immunity against viruses through the functions of T helper 1 (TH1) and T follicular helper (TFH) cell subsets. To better understand the role of these subsets in coronavirus disease 2019 (COVID-19) immunity, we conducted a longitudinal study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific CD4+ T cell and antibody responses in convalescent individuals who seroconverted during the first wave of the pandemic in Boston, MA, USA, across a range of COVID-19 disease severities. Analyses of spike (S) and nucleocapsid (N) epitope-specific CD4+ T cells using peptide and major histocompatibility complex class II (pMHCII) tetramers demonstrated expanded populations of T cells recognizing the different SARS-CoV-2 epitopes in most individuals compared with prepandemic controls. Individuals who experienced a milder disease course not requiring hospitalization had a greater percentage of circulating TFH (cTFH) and TH1 cells among SARS-CoV-2-specific cells. Analysis of SARS-CoV-2-specific CD4+ T cells responses in a subset of individuals with sustained anti-S antibody responses after viral clearance also revealed an increased proportion of memory cTFH cells. Our findings indicate that efficient early disease control also predicts favorable long-term adaptive immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , CD4-Positive T-Lymphocytes , Epitopes , Humans , Longitudinal Studies , Memory T Cells , Severity of Illness Index
12.
Clin Immunol ; 237: 108991, 2022 04.
Article in English | MEDLINE | ID: covidwho-1866980

ABSTRACT

Many studies have been performed in severe COVID-19 on immune cells in the circulation and on cells obtained by bronchoalveolar lavage. Most studies have tended to provide relative information rather than a quantitative view, and it is a combination of approaches by various groups that is helping the field build a picture of the mechanisms that drive severe lung disease. Approaches employed to date have not revealed information on lung parenchymal T cell subsets in severe COVID-19. Therefore, we sought to examine early and late T cell subset alterations in the lungs and draining lymph nodes in severe COVID-19 using a rapid autopsy protocol and quantitative imaging approaches. Here, we have established that cytotoxic CD4+ T cells (CD4 + CTLs) increase in the lungs, draining lymph nodes and blood as COVID-19 progresses. CD4 + CTLs are prominently expanded in the lung parenchyma in severe COVID-19. In contrast CD8+ T cells are not prominent, exhibit increased PD-1 expression, and no obvious increase is seen in the number of Granzyme B+ CD8+ T cells in the lung parenchyma in severe COVID-19. Based on quantitative evidence for re-activation in the lung milieu, CD4 + CTLs may be as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes , COVID-19 , CD8-Positive T-Lymphocytes , Humans , Lung , T-Lymphocyte Subsets , T-Lymphocytes, Cytotoxic
13.
Elife ; 112022 03 11.
Article in English | MEDLINE | ID: covidwho-1742931

ABSTRACT

Background: Risk of severe COVID-19 increases with age, is greater in males, and is associated with lymphopenia, but not with higher burden of SARS-CoV-2. It is unknown whether effects of age and sex on abundance of specific lymphoid subsets explain these correlations. Methods: Multiple regression was used to determine the relationship between abundance of specific blood lymphoid cell types, age, sex, requirement for hospitalization, duration of hospitalization, and elevation of blood markers of systemic inflammation, in adults hospitalized for severe COVID-19 (n = 40), treated for COVID-19 as outpatients (n = 51), and in uninfected controls (n = 86), as well as in children with COVID-19 (n = 19), recovering from COVID-19 (n = 14), MIS-C (n = 11), recovering from MIS-C (n = 7), and pediatric controls (n = 17). Results: This observational study found that the abundance of innate lymphoid cells (ILCs) decreases more than 7-fold over the human lifespan - T cell subsets decrease less than 2-fold - and is lower in males than in females. After accounting for effects of age and sex, ILCs, but not T cells, were lower in adults hospitalized with COVID-19, independent of lymphopenia. Among SARS-CoV-2-infected adults, the abundance of ILCs, but not of T cells, correlated inversely with odds and duration of hospitalization, and with severity of inflammation. ILCs were also uniquely decreased in pediatric COVID-19 and the numbers of these cells did not recover during follow-up. In contrast, children with MIS-C had depletion of both ILCs and T cells, and both cell types increased during follow-up. In both pediatric COVID-19 and MIS-C, ILC abundance correlated inversely with inflammation. Blood ILC mRNA and phenotype tracked closely with ILCs from lung. Importantly, blood ILCs produced amphiregulin, a protein implicated in disease tolerance and tissue homeostasis. Among controls, the percentage of ILCs that produced amphiregulin was higher in females than in males, and people hospitalized with COVID-19 had a lower percentage of ILCs that produced amphiregulin than did controls. Conclusions: These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance contributes to increased COVID-19 severity with age and in males. Funding: This work was supported in part by the Massachusetts Consortium for Pathogen Readiness and NIH grants R37AI147868, R01AI148784, F30HD100110, 5K08HL143183.


Subject(s)
COVID-19 , Lymphopenia , Amphiregulin , COVID-19/complications , Child , Female , Humans , Immunity, Innate , Inflammation , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , T-Lymphocyte Subsets
14.
Kidney Int Rep ; 6(12): 3002-3013, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1549765

ABSTRACT

INTRODUCTION: Acute kidney injury (AKI) is common in COVID-19 and associated with increased morbidity and mortality. We investigated alterations in the urine metabolome to test the hypothesis that impaired nicotinamide adenine dinucleotide (NAD+) biosynthesis and other deficiencies in energy metabolism in the kidney, previously characterized in ischemic, toxic, and inflammatory etiologies of AKI, will be present in COVID-19-associated AKI. METHODS: This is a case-control study among the following 2 independent populations of adults hospitalized with COVID-19: a critically ill population in Boston, Massachusetts, and a general population in Birmingham, Alabama. The cases had AKI stages 2 or 3 by Kidney Disease Improving Global Outcomes (KDIGO) criteria; the controls had no AKI. Metabolites were measured by liquid chromatography-mass spectrometry. RESULTS: A total of 14 cases and 14 controls were included from Boston and 8 cases and 10 controls from Birmingham. Increased urinary quinolinate-to-tryptophan ratio (Q/T), found with impaired NAD+ biosynthesis, was present in the cases at each location and pooled across locations (median [interquartile range]: 1.34 [0.59-2.96] in cases, 0.31 [0.13-1.63] in controls, P = 0.0013). Altered energy metabolism and purine metabolism contributed to a distinct urinary metabolomic signature that differentiated patients with and without AKI (supervised random forest class error: 2 of 28 in Boston, 0 of 18 in Birmingham). CONCLUSION: Urinary metabolites spanning multiple biochemical pathways differentiate AKI versus non-AKI in patients hospitalized with COVID-19 and suggest a conserved impairment in NAD+ biosynthesis, which may present a novel therapeutic target to mitigate COVID-19-associated AKI.

15.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: covidwho-1403154

ABSTRACT

Endothelial dysfunction accompanies the microvascular thrombosis commonly observed in severe COVID-19. Constitutively, the endothelial surface is anticoagulant, a property maintained at least in part via signaling through the Tie2 receptor. During inflammation, the Tie2 antagonist angiopoietin-2 (Angpt-2) is released from endothelial cells and inhibits Tie2, promoting a prothrombotic phenotypic shift. We sought to assess whether severe COVID-19 is associated with procoagulant endothelial dysfunction and alterations in the Tie2/angiopoietin axis. Primary HUVECs treated with plasma from patients with severe COVID-19 upregulated the expression of thromboinflammatory genes, inhibited the expression of antithrombotic genes, and promoted coagulation on the endothelial surface. Pharmacologic activation of Tie2 with the small molecule AKB-9778 reversed the prothrombotic state induced by COVID-19 plasma in primary endothelial cells. Lung autopsies from patients with COVID-19 demonstrated a prothrombotic endothelial signature. Assessment of circulating endothelial markers in a cohort of 98 patients with mild, moderate, or severe COVID-19 revealed endothelial dysfunction indicative of a prothrombotic state. Angpt-2 concentrations rose with increasing disease severity, and the highest levels were associated with worse survival. These data highlight the disruption of Tie2/angiopoietin signaling and procoagulant changes in endothelial cells in severe COVID-19. Our findings provide rationale for current trials of Tie2-activating therapy with AKB-9778 in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Endothelial Cells/drug effects , Protective Agents/pharmacology , Receptor, TIE-2/metabolism , Adult , Aged , Aged, 80 and over , Angiopoietin-2/metabolism , Aniline Compounds , Female , Gene Expression , Humans , Lung , Male , Middle Aged , Receptor, TIE-2/genetics , SARS-CoV-2 , Signal Transduction , Sulfonic Acids , Vascular Diseases/metabolism , Young Adult
18.
J Infect Dis ; 224(5): 777-782, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1381012

ABSTRACT

We analyzed plasma levels of interferons (IFNs) and cytokines, and expression of IFN-stimulated genes in peripheral blood mononuclear cells in patients with coronavirus disease 2019 of varying disease severity. Patients hospitalized with mild disease exhibited transient type I IFN responses, while intensive care unit patients had prolonged type I IFN responses. Type II IFN responses were compromised in intensive care unit patients. Type III IFN responses were induced in the early phase of infection, even in convalescent patients. These results highlight the importance of early type I and III IFN responses in controlling coronavirus disease 2019 progression.


Subject(s)
COVID-19/immunology , Interferon Type I/immunology , Interferon-gamma/immunology , Interferons/immunology , COVID-19/blood , Chemokines/blood , Cytokines/blood , Humans , Interferon Type I/blood , Interferon Type I/genetics , Interferon-gamma/blood , Interferon-gamma/genetics , Interferons/blood , Leukocytes, Mononuclear/immunology , SARS-CoV-2/isolation & purification , Interferon Lambda
19.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: covidwho-1373495

ABSTRACT

The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We hypothesized that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, correlating with poor outcomes. These Tregs showed a distinct transcriptional signature, with overexpression of several suppressive effectors, but also proinflammatory molecules like interleukin (IL)-32, and a striking similarity to tumor-infiltrating Tregs that suppress antitumor responses. Most marked during acute severe disease, these traits persisted somewhat in convalescent patients. A screen for candidate agents revealed that IL-6 and IL-18 may individually contribute different facets of these COVID-19-linked perturbations. These results suggest that Tregs may play nefarious roles in COVID-19, by suppressing antiviral T cell responses during the severe phase of the disease, and by a direct proinflammatory role.


Subject(s)
COVID-19/etiology , T-Lymphocytes, Regulatory/physiology , Adult , Aged , CD4-Positive T-Lymphocytes/virology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation , Humans , Inflammation/metabolism , Inflammation/virology , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lymphocytes, Tumor-Infiltrating/physiology , Male , Middle Aged , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/virology , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Open Forum Infect Dis ; 8(8): ofab153, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1371740

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kinetics remain understudied, including the impact of remdesivir. In hospitalized individuals, peak sputum viral load occurred in week 2 of symptoms, whereas viremia peaked within 1 week of symptom-onset, suggesting early systemic seeding of SARS-CoV-2. Remdesivir treatment was associated with faster viral decay.

SELECTION OF CITATIONS
SEARCH DETAIL